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Abstract. The site percolation problem is studied ond-dimensional generalizations of the
Kagoḿe lattice. These lattices are isotropic and have the same coordination numberq as the
hyper-cubic lattices ind dimensions, namelyq = 2d. The site percolation thresholds are
calculated numerically ford = 3, 4, 5, and 6. The scaling of these thresholds as a function of
dimensiond, or alternativelyq, is different than for hypercubic lattices:pc ∼ 2/q instead of
pc ∼ 1/(q − 1). The latter is the Bethe approximation, which is usually assumed to hold for all
lattices in high dimensions. A series expansion is calculated, in order to understand the different
behaviour of the Kagoḿe lattice. The return probability of a random walker on these lattices
is also shown to scale as 2/q. For bond percolation ond-dimensional diamond lattices these
results implypc ∼ 1/(q − 1).

1. Introduction

The Kagoḿe lattice is one of the most interesting lattices in two dimensions. It is one
of the eleven Archimedean tiling lattices, where all the vertices are of the same type
(see e.g. Weisstein 1997). In the case of the Kagomé lattice each vertex touches a
triangle, hexagon, triangle, and a hexagon. All these polygons are regular. Moreover,
the Kagoḿe lattice is closely related to the other lattices in two dimensions. The sites
of the Kagoḿe lattice correspond to the bonds of the honeycomb lattice, which in turn is
the dual of the triangular lattice. Therefore, since the bond percolation threshold of the
honeycomb lattice is 1− 2 sin(π/18), the site percolation threshold of the Kagomé lattice
is 1− 2 sin(π/18) = 0.652 7036. . . too (Sykes and Essam 1964). The bond percolation
threshold is not known exactly, but has been calculated numerically with high precision to
be 0.524 4053± 0.000 0003 (Ziff and Suding 1997).

Although these percolation thresholds have been known for quite some time, it is not
clear why this site percolation threshold is high, compared to other lattices. For instance,
it is much higher than the threshold 0.592 7460± 0.000 0005 for the square lattice (Ziff
and Sapoval 1986, Ziff 1992), although its coordination numberq = 4 is equal to that
of the Kagoḿe lattice. What is more striking is that even the pentagonal lattice, which
has a low average coordination number ofq = 31

3, has a lower site percolation threshold
0.6471± 0.0006 than the Kagoḿe lattice (Van der Marck 1997a). In other words, the
site percolation thresholds are not ordered according to the coordination numberq. This
runs contrary to common intuition, which leads one to expect that a lattice with a higher
connectivity has a lower percolation threshold. If one searches for general formulae that
correlate percolation thresholds with dimension and coordination number, the Kagomé lattice
therefore poses a problem. Galam and Mauger (1996) introduced different classes of lattices
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to avoid this problem, and they used different correlations for these classes. Although this
enabled them to derive good correlations, it prompts the question why certain lattices belong
to one class and others to another class.

An analogue in three dimensions was found recently: there is a lattice withq = 6 and
percolation threshold 0.3898± 0.0008 (Van der Marck 1997c). Compared to the simple
cubic lattice, which also hasq = 6, but a threshold of 0.311 604± 0.000 006 (Grassberger
1992), this threshold is much higher. It is even higher than the threshold for several lattices
with coordination numberq = 5 (Van der Marck 1997a).

In this paper, a generalization of the Kagomé lattice to higher dimensions is given
(section 2), and numerical calculations of the site percolation thresholds for three, four,
five, and six dimensions are presented (section 3). The scaling of these thresholds as a
function of dimension appears to be different than for hypercubic lattices. For the latter,
Gaunt et al (1976) calculated a series expansion in 1/(2d − 1), whered is the number
of dimensions. The leading term in their series ispc(d) = 1/(2d − 1), which is the so-
called Bethe approximation. This approximation holds exactly for Bethe lattices (see, e.g.,
Stauffer and Aharony 1992). For hypercubic lattices, the approximation underestimates the
percolation threshold in low dimensions, but improves in accuracy in higher dimensions.
In section 4 the series expansion for thed-dimensional Kagoḿe lattices is studied. It is
suggested that in this case the leading term in the series is 1/d, not 1/(2d − 1).

The return probability of a random walker ond-dimensional Kagoḿe lattices is discussed
in section 5. Ishioka and Koiwa (1978) conjectured that this probability is a good estimator
for the percolation threshold. Indeed, it is shown here that this return probability also scales
as 1/d. Section 6 contains a discussion of the results. These results give some insight into
the problem why the two-dimensional Kagomé lattice has a high site percolation threshold.

2. Kagomé lattices ind dimensions

The Kagoḿe lattice can be defined ind dimensions as follows. The lattice has a(d + 1)-
point basis, and these points form a regulard-dimensional polytope. In figure 1(a) the
situation in two dimensions is depicted. All the points of this basis are direct neighbours
of each other. Let us denote the basis points bybi , for i = 0, . . . , d. The lattice can be
constructed by translation of the basis in1

2d(d + 1) directions. These translations are given
by the vectors 2(bj − bi ) for j 6= i. This is a dependent set of vectors. One can select a
minimal set ofd vectors by setting, for example,i = 0, j = 1, . . . , d.

A site of the lattice can be identified by its numberi within the base polytope (runs from
0 to d), and the translationx with respect to a reference position. Consider a site{i,x}.
This site hasd neighbours in the same polytope,{j 6= i,x}, and anotherd neighbours in
adjacent polytopes,{j 6= i,x + 2(bi − bj )}. Therefore, the coordination number of this
lattice isq = 2d. Also, because there is no preferential direction in the construction, all the
directions are equivalent for this lattice, i.e. it is an isotropic lattice.

So the Kagoḿe lattice resembles the cubic lattice in the sense that both are isotropic
d-dimensional lattices with coordination numberq = 2d. However, we already know that
in two and three dimensions the site percolation thresholds of these lattices are distinctly
different.

In two dimensions the site percolation problem on the Kagomé lattice is equivalent to
the bond percolation problem on the honeycomb lattice (Sykes and Essam 1964). This
was shown by means of the star-triangle transformation. Analogous to the star-triangle
transformation, one can use a ‘star-tetrahedron’ transformation in three dimensions, see
figure 2. The site percolation problem on the tetrahedron ABCD, i.e. the three-dimensional
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Figure 1. (a) A description of the Kagoḿe lattice as a lattice with a three-point basis. The
basis points form a (regular) triangle. (b) Three base triangles define a larger triangle, which
truncates to a hexagon.

Figure 2. The star-tetrahedron transformation. The dashed lines AX, . . . ,DX, that come
together in the point X, form the diamond lattice.

Kagoḿe lattice, is equivalent to the bond percolation problem on the dashed lattice.
This dashed lattice is the diamond lattice, for whichpc,b = 0.3893± 0.0003 has been
calculated (Van der Marck 1997b). Generalizing tod dimensions, the site percolation on
the d-dimensional Kagoḿe lattice is equivalent to bond percolation on thed-dimensional
diamond lattice, which hasq = d + 1.

The Kagoḿe lattice defines a tiling ofd-dimensional space. In two dimensions, the
Kagoḿe lattice defines a tiling of the plane in terms of a regular triangle and a regular
hexagon. One can construct this hexagon from the base triangle: take three neighbouring
base triangles, as in figure 1(b). These three form a larger regular triangle. The hexagon
appears when one truncates the larger triangle by taking away the three smaller triangles.
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Table 1. The site percolation thresholds of the cubic and Kagomé lattices in three, four, five,
and six dimensions, as a function of the linear lattice sizeL. By comparison, some values for the
cubic lattices given in the literature are 0.311 604(6) (Grassberger 1992), 0.197(6), 0.141(3), and
0.108(3) (Gauntet al 1976). In the last row, marked ‘rw’, the values for the return probability of
a random walker are given. The estimated error margins concerning the last digits are indicated
between brackets.

d = 3 d = 4 d = 5 d = 6

L cubic Kagoḿe L cubic Kagoḿe L cubic Kagoḿe L cubic Kagoḿe

8 0.2088(2) 0.2787(2) 8 0.1425(2) 0.2080(3) 6 0.1043(2) 0.1630(2)
16 0.3233(2) 0.3952(2) 12 0.2037(2) 0.2753(2) 12 0.1413(2) 0.2076(2) 8 0.1049(2) 0.1643(3)
32 0.3171(2) 0.3924(2) 16 0.2014(2) 0.2736(2) 16 0.1412(2) 0.2078(2) 10 0.1060(2) 0.1652(3)
64 0.3139(2) 0.3908(2) 25 0.1989(2) 0.2726(2) 20 0.1407(2) 0.2080(2) 12 0.1064(2) 0.1660(3)

128 0.3125(2) 0.3903(2) 32 0.1987(2) 0.2724(2) 24 0.1406(2) 0.2081(2) 14 0.1067(2) 0.1664(3)
250 0.3119(2) 0.3897(2) 50 0.1974(2) 0.2719(2) 32 0.1406(2) 16 0.1070(2)

∞ 0.3114(2) 0.3895(2)∞ 0.1967(3) 0.2715(3)∞ 0.1407(3) 0.2084(4)∞ 0.1079(5) 0.1677(7)

rw 0.343(1) 0.417(1) rw 0.195(1) 0.274(1) rw 0.136(1) 0.208(1) rw 0.105(1) 0.170(1)

In two dimensions this is a rather complicated description of the tiling, but the advantage
is that one can use an identical procedure ind dimensions. One can start with the regular
base polytope of(d + 1) points in d dimensions,bi (for i = 0, . . . , d). This polytope is
shifted in d directions by the vectors 2(bi − b0) for i = 1, . . . , d. This defines a larger
regular polytope, which is then truncated by taking away the(d + 1) small polytopes. In
three dimensions, for example, the resulting polyhedron is the truncated tetrahedron (see,
e.g., Weisstein 1997). Thed-dimensional space is filled with the base regular polytope and
the larger truncated polytope.

In view of the considerations in sections 4 and 5, it is helpful to discuss one more
important property of thed-dimensional Kagoḿe lattice: two adjacent sites haved − 1
common neighbours. This is demonstrated by the following arguments. When the two sites
are within the same base polytope, characterized by{i,x} and {j,x} (j 6= i), all the other
d − 1 sites of that polytope are common neighbours. When the two sites arenot within the
same base polytope, they are characterized by{i,x} and {j,x + 2(bi − bj )}. Note thatj
cannot be equal toi for two adjacent sites. Thed − 1 common neighbours of these two
sites are{k,x+ 2(bi − bk)} with the restriction thatk 6= i, j . This is because they are one
stepbi − bk away from{i,x}, and one stepbk − bj from {j,x+ 2(bi − bj )}.

3. Percolation thresholds

The site percolation thresholds of the Kagomé lattice in three, four, five, and six dimensions
are show in table 1 as a function of the lattice size. The method given by Stauffer and
Aharony (1992) has been used. This method is simple to program, but in its simplest form
it has the drawback that one needs to have allN = (d+1)Ld sites of a network resident in
memory. Therefore, the calculation is restricted to relatively low values ofL, the linear size
of the lattice. Especially in higher dimensions this is rather restrictive: the highestL-value
used wasL = 14 for the six-dimensional Kagoḿe lattice. One can check in a scaling plot,
figure 3, that the used lattices are indeed large enough to be in the scaling regime, and
hence allow extrapolation to infinite lattice sizes.
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Figure 3. The scaling of the percolation threshold with network sizeN = (d + 1)Ld .

For each of the lattices, percolation in only one direction, say thex1-direction,
was checked. The lattice was defined to be percolating whenever the two boundaries
{i = 0,x1 = 1} and{i = d,x1 = L} were connected. The boundary conditions in the other
directions were not periodic.

The percolation thresholds of a lattice of sizeN obey the scaling relation

|pc(N)− pc(∞)| ∼ N−1/(νd). (1)

Here the critical exponentν is 0.88 in three dimensions and 0.68, 0.57, 0.5 in four, five,
and six dimensions, respectively (Stauffer and Aharony 1992). The results quoted in the
row marked∞ in table 1 are fits ofpc(N) to this scaling relation, using the last three points
in the table.

The data and the fits are shown in figure 3 ford = 3 andd = 6. From the figure it can
be concluded that the input values for the fits are indeed within the scaling regime, and that
the fits are therefore sensible. Ford = 6 the differencepc(N) − pc(∞) is larger than for
lower dimensions, because the number of lattice sites that are near to a boundary increases
with dimension.

Also shown in table 1 are results for the percolation thresholds of the cubic lattice.
These numbers agree with the literature (Stauffer and Aharony 1992) and can be seen as a
check that the programs used in the present work are correct.

The difference between the percolation threshold for the Kagomé lattices and the (hyper-)
cubic ones increases with dimension. This is illustrated in figure 4. In the next section a
series expansion is studied, in order to understand this behaviour.

4. Series expansion

One could conjecture, based on the numerical estimates of the percolation thresholds, that
the scaling of these thresholds as a function of dimension is different for the Kagomé
lattice than for the cubic lattice. The scaling behaviour of the cubic lattice was studied by
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Figure 4. The percolation thresholds as a function of dimensiond. Equation (2) is the result
of Gauntet al (1976) for the thresholds of the cubic lattices. The thresholds for the Kagomé
lattices scale as 1/d.

Gauntet al (1976). Their result for the percolation threshold was

pc(d) = 1

2d − 1

(
1+ 3/2

2d − 1
+ 15/4

(2d − 1)2
+ 83/4

(2d − 1)3
+ · · ·

)
. (2)

The leading term is the percolation threshold of a Bethe lattice with coordination numberq =
2d. Equation (2) agrees well with the known numerical estimates for the cubic lattices for
d > 3, as is clear from figure 4.

Gauntet al (1976) used cluster counting to calculate a series expansion for the mean
size S of clusters at low probabilitiesp. Since the mean cluster size diverges at the
percolation threshold, they studied the radius of convergence of the series expansion ofS.
They argued that this radius of convergence will be determined predominantly by the
singularity atp = pc, which enabled them to derive equation (2). In this section these
techniques are used to study the percolation thresholds of the Kagomé lattice in higher
dimensions. At the basis of the approach are the ‘perimeter polynomials’, as described by
Sykes and Glen (1976). Denoting the mean number per lattice site of clusters ofs sites by
n̄s , we have for example

n̄1 = pq2d n̄2 = dp2q3d−1. (3)

Herep is the probability that a site is occupied, andq = 1−p the probability that a site is
empty. One can interpretp(s) = sn̄s as the probability that a site is occupied by a cluster
of sizes. When one sumsp(s) over all cluster sizes, one gets the probability that a site is
occupied byany cluster, i.e.p:

∞∑
s=1

sn̄s =
∞∑
s=1

p(s) = p. (4)

The power 3d − 1 of q in the expression for̄n2 indicates that all clusters of two sites are
surrounded by 3d−1 neighbours. Already we see a difference with the cubic lattice, which
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hasn̄2 = dp2q4d−2. So even though a site on the Kagomé lattice has as many neighbours as
a site on the cubic lattice (namely 2d), a two-site cluster has less neighbours on a Kagomé
lattice than on a cubic lattice. This is because on the Kagomé lattice two adjacent sites
haved − 1 common neighbours, whereas on the cubic lattice they have none.

A relatively simple counting procedure by hand reveals the next few perimeter
polynomials to be

n̄3 = 1
3d(4d − 1)p3q4d−2

n̄4 = 1
12d(5d − 1)(5d − 2)p4q5d−3,

n̄5 = [ 1
60d(6d − 1)(6d − 2)(6d − 3)− 2d(d − 1)]p5q6d−4

+2d(d − 1)p5q6d−5. (5)

In figures 5–7 the contributing graphs are depicted in two dimensions. In the expressions
for n̄1, . . . , n̄4 a clear pattern seems to emerge. The coefficient ofn̄s has factors(s+1)d−1,
(s + 1)d − 2, . . . , and the power ofq is always(s + 1)d − (s − 1).

Figure 5. The clusters of three sites.

Figure 6. The clusters of four sites.

However, this trend is broken in̄n5. Although the sum of the two coefficients appearing
here still has the factors(s + 1)d − 1, etc, there are now terms with different powers ofq.
In other words, inn̄5 we encounter for the first time that there are clusters with different
numbers of neighbours; clusters with 6d−4 neighbours and clusters with 6d−5 neighbours.
The latter ones are depicted in figure 8. They are the type of cluster that ‘bites itself in the
tail’. At first sight, one would think that this would occur already for clusters of two sites,
but in those cases the number of neighbours is not affected. This number is only affected
for the clusters depicted in figure 8. On the cubic lattice this occurs for the first time for
clusters of three sites. Another difference is that for the cubic lattice the leading power ofq

is 2sd − 2(s − 1), compared to(s + 1)d − (s − 1) for the Kagoḿe lattice.
The identity (4) can be exploited to determine one more mean cluster number, namelyn̄6,

albeit in the limit ofq → 1. Following Sykes and Glen (1976) we substitute equations (3)
and (5) into the identity (4), and setq = 1−p. This yields a power series inp, of which the
coefficient ofp is 1, and the coefficients ofp2, . . . , p5 vanish identically. The higher-order
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Figure 7. The clusters of five sites.

Figure 8. On the Kagoḿe lattice the first instance of a cluster with fewer than usual neighbours
occurs for clusters of five sites (left picture). On a cubic lattice it occurs for clusters of three
sites (right picture).

coefficients do not vanish, because the number of clusters of six or more sites were not
included. Becausēn6 is the only missing term that can contribute terms of orderp6, we
can conclude that

n̄6|q→1 = [ 1
360d(7d − 1)(7d − 2)(7d − 3)(7d − 4)− 5

3d(d − 1)]p6. (6)

The mean size of clusters at low probabilities,S, is defined as

S =
∑

s sp(s)∑
s p(s)

= 1

p

∑
s

s2n̄s . (7)

Again equations (3) and (5) can be used, andq = 1− p, to derive a power series

S(p) = 1+ 2(dp)+ 2(dp)2+ 2(dp)3+ 2(dp)4

+2(dp)5
[

1+ 10

d3

(
1− 1

d

)]
+O(p6). (8)

The first few terms in this low-density expansion ofS(p) are remarkably simple. It is
almost a geometric series, until the fifth power. The extra terms in the coefficient of(dp)5

are due to the clusters that ‘bite in their own tail’.



d-dimensional Kagom´e lattices 3457

Although the resemblance ofS(p) to a geometric series is not exact, it does suggest that
1/d is the obvious candidate for the expansion parameter. This is in contrast to the cubic
lattice, where it is 1/(2d − 1), see equation (2). In fact, the resemblance to a geometric
series suggests that a singularity ofS(p) should occur in the vicinity ofdp = 1. Therefore,
one can expect the percolation threshold to scale as

pc ∼ 1

d
. (9)

In figure 4 the relationpc = 1/d is shown with a dashed line. The percolation thresholds
for d = 5 and 6 are already reasonably well approximated by this relation. In an attempt
to calculate the percolation threshold ford = 8, we computed 0.1059± 0.0005 forL = 5,
0.1086± 0.0006 forL = 6, and 0.1117± 0.0005 forL = 7. Based on the last two points
one can fit the percolation threshold to be 0.120± 0.003, which is close to the value 0.125
one would expect on the basis of equation (9). However, the point forL = 5 does not lie
on the same fit, indicating that these lattice sizes are not yet large enough. Therefore, there
is probably also a small systematic error in the determination of the value 0.120.

When one wants to refine the scaling behaviour given by equation (9) with terms of the
order of 1/d2 and further, analogous to equation (2), more terms in the series expansion
would be required, plus a careful mathematical analysis of the radius of convergence of the
series. This is beyond the scope of the present paper.

5. Random walks

It is interesting to study the return probabilityPr of a random walker on ad-dimensional
Kagoḿe lattice. Ishioka and Koiwa (1978) suggested thatPr is an upper bound for the
site percolation threshold on any lattice:Pr > pc. For Bethe lattices, the equal sign holds
(Hughes and Sahimi 1982). The arguments given by Ishioka and Koiwa to support their
conjecture are not exact, but the relation appears to work fairly well.Pr andpc lie closer
together, the more connected a lattice is. Also Sahimiet al (1983) studied the relation
between a random walker (not self-avoiding) and percolation, albeit bond percolation.

The return probability of a random walker can be calculated numerically with a simple
computer program. One can letNw walkers perform at maximumNs steps, and count the
number of walkers that have re-visited the site they started from. Alternatively, one can let
Nw walkers perform steps until they are either back at the origin or further away from the
origin than a certain predefined distance. Both methods have been used to estimatePr with
an estimated inaccuracy of about 0.001. Note that there are two sources of inaccuracy. The
first is a statistical uncertainty, which scales as 1/

√
Nw; the second is a systematic error,

because each walker is stopped at a certain moment (afterNs steps or at a given distance
from the origin). For each of these walkers there is a finite probability that they would have
reached the origin, when given enough time. As a result, the numerical estimates have a
systematic error to the downside. This bias can be made smaller by using a large number
of steps, or a large cut-off distance. In the calculation of the numbers quoted in table 1,
Ns = 106 and higher has been used, andNw = 105. The results for the cubic lattices are
consistent with Finch (1997) and Flajolet (1995).

The numerical values forPr are close to the percolation thresholds, especially ford > 4.
It looks as if the return probability of a random walker obeys the same scaling relation as the
percolation threshold. In the remainder of this section, therefore, a crude approximation for
the return probability is calculated using simple arguments. This approximation corroborates
the scaling of the return probability asPr ∼ 1/d.
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Consider a random walker on thed-dimensional Kagoḿe lattice. Since all directions of
the lattice are equivalent, it does not make a difference which step the walker makes first.
Assume, without loss of generality, that the walker remains within the base polytope{i, 0}.
Assume further, as a first approximation, that he stays within this polytope for a number
of steps, and then returns to the origin. The walker can take an arbitrary number of steps
within this base polytope, with a probability(d − 1)/(2d) (the walker can choose from
2d directions,d of which are outside the base polytope, and one of the 2d is the origin).
After a number of steps the walker should step back to the origin, which happens with a
probability 1/(2d). This approximation yields

Pr,1 =
∞∑
s=2

1

2d

(
d − 1

2d

)s−2

= 1

1+ d . (10)

This approximation already reveals an interesting point: in high dimensions, the return
probability scales asP ∼ 1/d. Since the probability 1/(1+ d) is the exact probability of
return via a few selected paths, we also know that the exact probability on return viaany
path will be higher than 1/(1+d). It is therefore impossible that it is as low as 1/(2d−1),
as is the case for cubic lattices.

One can improve on the above approximation by allowing the walker to step outside
the base polytope occasionally. Choose, for instance,i sitesxi from which the walker steps
outside. If the walker makess steps within the base polytope before returning to the origin,
there are

(
s−1
i

)
possible choices (because the last of thes steps is to the origin):

Pr,2 =
∞∑
s=2

1

2d

(
d − 1

2d

)s−2

×
s−1∑
i=0

(
s − 1
i

)(
1

4d

)i
.

The factor 1/(4d) emerges because the walker has a probability of 1/2 to step outside the
base polytope, and a probability 1/(2d) to immediately step back toxi . One can also allow
the walker to make a number of additional steps, as long as he is only one step away from
xi and outside the base polytope. There are(d−1) possibilities out of a total of 2d to make
such a step

Pr,2 =
∞∑
s=2

1

2d

(
d − 1

2d

)s−2

×
s−1∑
i=0

(
s − 1
i

)[
1

4d

∞∑
k=0

(
d − 1

2d

)k]i
= 1

d

1+ 3/(2d)

1+ 3/(2d)+ 3/(2d2)
. (11)

This type of reasoning can be taken a step further, yielding

Pr,3 = 1

d

1+ 2/d + 9/(4d2)

1+ 2/d + 11/(4d2)+ 9/(4d3)
. (12)

All the paths that are included in this way are paths where the walker returns to the origin
through the base polytope he started in. The first contributions from paths that return from
the opposite side are paths of six steps, see figure 8. As there are 2d(d − 1) of such paths,
the probability to return from the opposite side in six steps is(d − 1)/(2d)5, which is
of the order 1/d4. Thus the conclusion that the return probability scales as 1/d remains
unchanged.

As a numerical check on this scaling behaviour, the return probability for the eight-
dimensional Kagoḿe lattice was calculated:Pr = 0.126± 0.001. This compares well with
the approximation 0.124 from equation (12).
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6. Discussion

The Kagoḿe lattice has rather different properties ind dimensions than the cubic lattice: it
does not behave as a Bethe lattice in high dimensions, although one usually assumes that
all lattices do. The series expansion of section 4 provides some insight into why this is
the case. One clear difference with the cubic lattice is that the leading power ofq in the
expression for the number of clusters ofs sites is(s+1)d− (s−1) for the Kagoḿe lattice,
but 2sd − 2(s − 1) for the cubic lattice. The coefficient ofsd differs by a factor of two
here. The significance of this power ofq is that it is the ‘coordination number’ of a cluster
of s sites, just asq is the coordination number of a single site. The underlying reason
for the different powers ofq is that two adjacent sites on the Kagomé lattice always have
d − 1 common neighbours, whereas two adjacent sites on the cubic lattice have none. In
high dimensions this difference does not disappear, but instead becomes more important.

The same difference also explains why the return probability is different for these
lattices. Since adjacent sites haved − 1 common neighbours, there is, in high dimensions,
an increasing number of ways to return to the origin in three steps. On a Bethe lattice,
such paths do not exist: here a walker can only return to the origin by retracing his steps.
Therefore, the Kagoḿe lattice does not behave as a Bethe lattice in high dimensions.

Going back to the two-dimensional Kagomé lattice, one could say that one of the reasons
why it has a much higher site percolation threshold than the square lattice is because of its
‘common neighbours’.

We can apply the same reasoning tobond percolation. The bond percolation threshold
of the Kagoḿe lattice is also higher than that of the square lattice, but the difference is
smaller than for the site percolation threshold. Two adjacent bonds on the square lattice
always have two common neighbours. On the Kagomé lattice, two adjacent bonds have,
depending on their relative position, two or three common neighbours. The former happens
in two thirds of the situations, the latter in one third. Therefore, forbond percolation
the Kagoḿe lattice has more resemblance to the square lattice, but still the two lattices
are different. This is consistent with the difference in bond percolation thresholds being
smaller, but not negligible.

Finally, let us consider the relation to the diamond lattice ind dimensions. Since the
site percolation threshold of the Kagomé lattice scales aspc ∼ 1/d = 2/q, this holds for
the bond percolation threshold of the diamond lattice as well. However, for the diamond
lattice q = d + 1, sopc,dia ∼ 1/(q − 1), which is the familiar Bethe result once more.
This highlights a more general property. Each bond problem can be mapped onto a site
problem (see, e.g., Kesten 1982). When the bond problem is on a lattice withq = qb, the
lattice for the corresponding site problem will haveqs = 2(qb− 1). As a consequence, for
each class of lattices for which the bond percolation thresholds scale aspc ∼ f (q), there is
another class of lattices for which the site percolation thresholds scale aspc ∼ f ( 1

2q + 1).
It would, therefore, be more consistent to describe bond percolation in terms of the number
of neighbours a bond has, which is 2(q − 1).
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