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Abstract. The site percolation problem is studied drdimensional generalizations of the
Kagone lattice. These lattices are isotropic and have the same coordination ngnalsethe
hyper-cubic lattices ind dimensions, namelyy = 24. The site percolation thresholds are
calculated numerically fod = 3,4, 5, and 6. The scaling of these thresholds as a function of
dimensiond, or alternativelyq, is different than for hypercubic latticeg:c ~ 2/q instead of

pc ~ 1/(g —1). The latter is the Bethe approximation, which is usually assumed to hold for all
lattices in high dimensions. A series expansion is calculated, in order to understand the different
behaviour of the Kagomn lattice. The return probability of a random walker on these lattices

is also shown to scale ag@ For bond percolation od-dimensional diamond lattices these
results implype ~ 1/(q — 1).

1. Introduction

The Kagong lattice is one of the most interesting lattices in two dimensions. It is one
of the eleven Archimedean tiling lattices, where all the vertices are of the same type
(see e.g. Weisstein 1997). In the case of the Kagdaitice each vertex touches a
triangle, hexagon, triangle, and a hexagon. All these polygons are regular. Moreover,
the Kagong lattice is closely related to the other lattices in two dimensions. The sites
of the Kagoné lattice correspond to the bonds of the honeycomb lattice, which in turn is
the dual of the triangular lattice. Therefore, since the bond percolation threshold of the
honeycomb lattice is + 2 sin(r/18), the site percolation threshold of the Kagenattice

is 1— 2sin(z/18 = 0.6527036.. too (Sykes and Essam 1964). The bond percolation
threshold is not known exactly, but has been calculated numerically with high precision to
be 0524 4053+ 0.000 0003 (Ziff and Suding 1997).

Although these percolation thresholds have been known for quite some time, it is not
clear why this site percolation threshold is high, compared to other lattices. For instance,
it is much higher than the threshold502 74604+ 0.000 0005 for the square lattice (Ziff
and Sapoval 1986, Ziff 1992), although its coordination numpet 4 is equal to that
of the Kagoné lattice. What is more striking is that even the pentagonal lattice, which
has a low average coordination numbergo& 3%, has a lower site percolation threshold
0.6471+ 0.0006 than the Kagoén lattice (Van der Marck 1997a). In other words, the
site percolation thresholds are not ordered according to the coordination ngm@és
runs contrary to common intuition, which leads one to expect that a lattice with a higher
connectivity has a lower percolation threshold. If one searches for general formulae that
correlate percolation thresholds with dimension and coordination number, the Edgibice
therefore poses a problem. Galam and Mauger (1996) introduced different classes of lattices
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to avoid this problem, and they used different correlations for these classes. Although this
enabled them to derive good correlations, it prompts the question why certain lattices belong
to one class and others to another class.

An analogue in three dimensions was found recently: there is a latticegwitl® and
percolation threshold.8898+ 0.0008 (Van der Marck 1997c). Compared to the simple
cubic lattice, which also hag = 6, but a threshold of 811 604+ 0.000 006 (Grassberger
1992), this threshold is much higher. It is even higher than the threshold for several lattices
with coordination numbey = 5 (Van der Marck 1997a).

In this paper, a generalization of the Kagertattice to higher dimensions is given
(section 2), and numerical calculations of the site percolation thresholds for three, four,
five, and six dimensions are presented (section 3). The scaling of these thresholds as a
function of dimension appears to be different than for hypercubic lattices. For the latter,
Gauntet al (1976) calculated a series expansion {2 — 1), whered is the number
of dimensions. The leading term in their seriespigd) = 1/(2d — 1), which is the so-
called Bethe approximation. This approximation holds exactly for Bethe lattices (see, e.g.,
Stauffer and Aharony 1992). For hypercubic lattices, the approximation underestimates the
percolation threshold in low dimensions, but improves in accuracy in higher dimensions.
In section 4 the series expansion for #ialimensional Kagom lattices is studied. It is
suggested that in this case the leading term in the serie&lisnbt 1/(2d — 1).

The return probability of a random walker @dadimensional Kago@ lattices is discussed
in section 5. Ishioka and Koiwa (1978) conjectured that this probability is a good estimator
for the percolation threshold. Indeed, it is shown here that this return probability also scales
as J/d. Section 6 contains a discussion of the results. These results give some insight into
the problem why the two-dimensional Kagérattice has a high site percolation threshold.

2. Kagomé lattices in d dimensions

The Kagong lattice can be defined i dimensions as follows. The lattice hags&+ 1)-
point basis, and these points form a reguladimensional polytope. In figure 1(a) the
situation in two dimensions is depicted. All the points of this basis are direct neighbours
of each other. Let us denote the basis pointsbyfor i = 0,...,d. The lattice can be
constructed by translation of the basis%im(d + 1) directions. These translations are given
by the vectors &; — b;) for j # i. This is a dependent set of vectors. One can select a
minimal set ofd vectors by setting, for examplée=0, j =1,...,d.

A site of the lattice can be identified by its numbewithin the base polytope (runs from
0 to d), and the translatiom with respect to a reference position. Consider a Site:}.
This site hasd neighbours in the same polytopg, # i, «}, and anothee/ neighbours in
adjacent polytopes{j # i,z + 2(b; — b;)}. Therefore, the coordination number of this
lattice isq = 2d. Also, because there is no preferential direction in the construction, all the
directions are equivalent for this lattice, i.e. it is an isotropic lattice.

So the Kagora lattice resembles the cubic lattice in the sense that both are isotropic
d-dimensional lattices with coordination numhge= 2d. However, we already know that
in two and three dimensions the site percolation thresholds of these lattices are distinctly
different.

In two dimensions the site percolation problem on the Kagdattice is equivalent to
the bond percolation problem on the honeycomb lattice (Sykes and Essam 1964). This
was shown by means of the star-triangle transformation. Analogous to the star-triangle
transformation, one can use a ‘star-tetrahedron’ transformation in three dimensions, see
figure 2. The site percolation problem on the tetrahedron ABCD, i.e. the three-dimensional
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Figure 1. (a) A description of the Kagofnlattice as a lattice with a three-point basis. The
basis points form a (regular) triangle. (b) Three base triangles define a larger triangle, which
truncates to a hexagon.

A

Figure 2. The star-tetrahedron transformation. The dashed lines.AXDX, that come
together in the point X, form the diamond lattice.

Kagone lattice, is equivalent to the bond percolation problem on the dashed lattice.
This dashed lattice is the diamond lattice, for whigh, = 0.3893+ 0.0003 has been
calculated (Van der Marck 1997b). Generalizingstaimensions, the site percolation on
the d-dimensional Kagor lattice is equivalent to bond percolation on thelimensional
diamond lattice, which hag = d + 1.

The Kagong lattice defines a tiling ofl-dimensional space. In two dimensions, the
Kagone lattice defines a tiling of the plane in terms of a regular triangle and a regular
hexagon. One can construct this hexagon from the base triangle: take three neighbouring
base triangles, as in figure 1(b). These three form a larger regular triangle. The hexagon
appears when one truncates the larger triangle by taking away the three smaller triangles.
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Table 1. The site percolation thresholds of the cubic and Kagdattices in three, four, five,

and six dimensions, as a function of the linear lattice £iz&8y comparison, some values for the
cubic lattices given in the literature are8Q1 6046) (Grassberger 1992),107(6), 0.141(3), and
0.108(3) (Gauntet al 1976). In the last row, marked ‘rw’, the values for the return probability of

a random walker are given. The estimated error margins concerning the last digits are indicated
between brackets.

d=3 d=4 d=5 d=6

L  cubic Kagon@ L cubic Kagone L cubic Kagon@ L cubic Kagong

8 0.2088(2) 0.2787(2) 8 0.1425(2) 0.2080(3) 6 0.1043(2) 0.1630(2)
16 0.3233(2) 0.3952(2) 12 0.2037(2) 0.2753(2) 12 0.1413(2) 0.2076(2) 8 0.1049(2) 0.1643(3)
32 0.3171(2) 0.3924(2) 16 0.2014(2) 0.2736(2) 16 0.1412(2) 0.2078(2) 10 0.1060(2) 0.1652(3)
64 0.3139(2) 0.3908(2) 25 0.1989(2) 0.2726(2) 20 0.1407(2) 0.2080(2) 12 0.1064(2) 0.1660(3)
128 0.3125(2) 0.3903(2) 32 0.1987(2) 0.2724(2) 24 0.1406(2) 0.2081(2) 14 0.1067(2) 0.1664(3)
250 0.3119(2) 0.3897(2) 50 0.1974(2) 0.2719(2) 32 0.1406(2) 16 0.1070(2)

oo 0.3114(2) 0.3895(2)co 0.1967(3) 0.2715(3)co 0.1407(3) 0.2084(4)co 0.1079(5) 0.1677(7)

rw 0.343(1) 0.417(1) rw 0.195(1) 0.274(1) rw 0.136(1) 0.208(1) rw 0.105(1) 0.170(1)

In two dimensions this is a rather complicated description of the tiling, but the advantage
is that one can use an identical procedurel idimensions. One can start with the regular
base polytope ofd + 1) points ind dimensionsp; (fori = 0,...,d). This polytope is
shifted ind directions by the vectors(8; — bg) for i = 1,...,d. This defines a larger
regular polytope, which is then truncated by taking away (the- 1) small polytopes. In
three dimensions, for example, the resulting polyhedron is the truncated tetrahedron (see,
e.g., Weisstein 1997). Thédimensional space is filled with the base regular polytope and
the larger truncated polytope.

In view of the considerations in sections 4 and 5, it is helpful to discuss one more
important property of thel-dimensional Kago@ lattice: two adjacent sites have— 1
common neighboursThis is demonstrated by the following arguments. When the two sites
are within the same base polytope, characterizedi by} and{j, «} (j # i), all the other
d — 1 sites of that polytope are common neighbours. When the two sitesoareithin the
same base polytope, they are characterizediby} and{j, x + 2(b; — b;)}. Note that;
cannot be equal to for two adjacent sites. Thé — 1 common neighbours of these two
sites arelk, « + 2(b; — by)} with the restriction thak # i, j. This is because they are one
stepb; — by, away from{i, «}, and one step; — b; from {j, x + 2(b; — b;)}.

3. Percolation thresholds

The site percolation thresholds of the Kagohattice in three, four, five, and six dimensions

are show in table 1 as a function of the lattice size. The method given by Stauffer and
Aharony (1992) has been used. This method is simple to program, but in its simplest form
it has the drawback that one needs to haveVa# (d + 1)L¢ sites of a network resident in
memory. Therefore, the calculation is restricted to relatively low valuds, tfie linear size

of the lattice. Especially in higher dimensions this is rather restrictive: the higheatue

used wagdl = 14 for the six-dimensional Kagagnlattice. One can check in a scaling plot,
figure 3, that the used lattices are indeed large enough to be in the scaling regime, and
hence allow extrapolation to infinite lattice sizes.
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Figure 3. The scaling of the percolation threshold with network size= (d + 1)L¢.

For each of the lattices, percolation in only one direction, say dhelirection,
was checked. The lattice was defined to be percolating whenever the two boundaries
{i=0,x, =1} and{i = d, 1 = L} were connected. The boundary conditions in the other
directions were not periodic.

The percolation thresholds of a lattice of siXeobey the scaling relation

|pe(N) — pe(00)| ~ N~H0D, (1)

Here the critical exponent is 0.88 in three dimensions and@8, 057, Q5 in four, five,

and six dimensions, respectively (Stauffer and Aharony 1992). The results quoted in the
row markedoo in table 1 are fits ofpc(N) to this scaling relation, using the last three points

in the table.

The data and the fits are shown in figure 3doe 3 andd = 6. From the figure it can
be concluded that the input values for the fits are indeed within the scaling regime, and that
the fits are therefore sensible. Rér= 6 the differencep.(N) — pc(o0) is larger than for
lower dimensions, because the number of lattice sites that are near to a boundary increases
with dimension.

Also shown in table 1 are results for the percolation thresholds of the cubic lattice.
These numbers agree with the literature (Stauffer and Aharony 1992) and can be seen as a
check that the programs used in the present work are correct.

The difference between the percolation threshold for the Kaégaitices and the (hyper-)
cubic ones increases with dimension. This is illustrated in figure 4. In the next section a
series expansion is studied, in order to understand this behaviour.

4. Series expansion

One could conjecture, based on the numerical estimates of the percolation thresholds, that
the scaling of these thresholds as a function of dimension is different for the Kagom
lattice than for the cubic lattice. The scaling behaviour of the cubic lattice was studied by
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Figure 4. The percolation thresholds as a function of dimensiorEquation (2) is the result
of Gauntet al (1976) for the thresholds of the cubic lattices. The thresholds for the Kagom
lattices scale as/4.

Gauntet al (1976). Their result for the percolation threshold was
1 3/2 15/4 83/4
pC(d)_2d—1(1+2d—1+(2d—1)2+(2d—1)3+"') @
The leading term is the percolation threshold of a Bethe lattice with coordination nymber
2d. Equation (2) agrees well with the known numerical estimates for the cubic lattices for
d > 3, as is clear from figure 4.

Gauntet al (1976) used cluster counting to calculate a series expansion for the mean
size S of clusters at low probabilitiep. Since the mean cluster size diverges at the
percolation threshold, they studied the radius of convergence of the series expanSion of
They argued that this radius of convergence will be determined predominantly by the
singularity atp = pc, which enabled them to derive equation (2). In this section these
techniques are used to study the percolation thresholds of the Katmitice in higher
dimensions. At the basis of the approach are the ‘perimeter polynomials’, as described by
Sykes and Glen (1976). Denoting the mean number per lattice site of clustesstes by
iy, we have for example

i =pg® iy =dp*g*t. 3)
Here p is the probability that a site is occupied, apé= 1 — p the probability that a site is
empty. One can interpregi(s) = si; as the probability that a site is occupied by a cluster

of sizes. When one sumg(s) over all cluster sizes, one gets the probability that a site is
occupied byany cluster, i.e.p:

Zsﬁs = Zp(s) = p. (4)
s=1 s=1

The power @ — 1 of g in the expression foii, indicates that all clusters of two sites are
surrounded by @— 1 neighbours. Already we see a difference with the cubic lattice, which
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hasi, = dp?q*~2. So even though a site on the Kagaattice has as many neighbours as
a site on the cubic lattice (namely/®, a two-site cluster has less neighbours on a Kagom
lattice than on a cubic lattice. This is because on the Kagtattice two adjacent sites
haved — 1 common neighbours, whereas on the cubic lattice they have none.

A relatively simple counting procedure by hand reveals the next few perimeter
polynomials to be

iis = 3d(4d — 1) p*q**~?
fia = Ad(5d — 1)(5d — 2)p*q>~3,
jis = [&d(6d — 1)(6d — 2)(6d — 3) — 2d(d — 1)] p°¢*~*

+2d(d — 1) p°¢¥ . (5)
In figures 5—7 the contributing graphs are depicted in two dimensions. In the expressions
for iy, ..., ng a clear pattern seems to emerge. The coefficient bias factorgs +1)d — 1,

(s +1)d — 2, ..., and the power of; is always(s + 1)d — (s — 1).

(3)

Wit

d2

Figure 5. The clusters of three sites.

Figure 6. The clusters of four sites.

However, this trend is broken its. Although the sum of the two coefficients appearing
here still has the factorg + 1)d — 1, etc, there are now terms with different powersyof
In other words, inis we encounter for the first time that there are clusters with different
numbers of neighbours; clusters withi -6 4 neighbours and clusters witld 6-5 neighbours.

The latter ones are depicted in figure 8. They are the type of cluster that ‘bites itself in the
tail’. At first sight, one would think that this would occur already for clusters of two sites,
but in those cases the number of neighbours is not affected. This number is only affected
for the clusters depicted in figure 8. On the cubic lattice this occurs for the first time for
clusters of three sites. Another difference is that for the cubic lattice the leading power of

is 2sd — 2(s — 1), compared tqs + 1)d — (s — 1) for the Kagon& lattice.

The identity (4) can be exploited to determine one more mean cluster number, ngmely
albeit in the limit ofg — 1. Following Sykes and Glen (1976) we substitute equations (3)
and (5) into the identity (4), and set= 1— p. This yields a power series in, of which the
coefficient of p is 1, and the coefficients gf?, ..., p® vanish identically. The higher-order
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neighbours on two sides of the cluster

Figure 8. On the Kagor® lattice the first instance of a cluster with fewer than usual neighbours
occurs for clusters of five sites (left picture). On a cubic lattice it occurs for clusters of three
sites (right picture).

coefficients do not vanish, because the number of clusters of six or more sites were not
included. Becaus@g is the only missing term that can contribute terms of org&rwe
can conclude that

figlg—s1 = [55d (7d — 1)(7d — 2)(7d — 3)(7d — 4) — 2d(d — 1)] p°. (6)
The mean size of clusters at low probabiliti€s,is defined as
d..spls) 1 2
== ==-> 5. 7
dp) p Z )
Again equations (3) and (5) can be used, gnd 1 — p, to derive a power series
S(p) = 1+ 2(dp) + 2(dp)? + 2(dp)® + 2(dp)*

10 1
+2(dp)® [1 + =3 (1 — Zz)} + O(p®). (8)

The first few terms in this low-density expansion §fp) are remarkably simple. It is
almost a geometric series, until the fifth power. The extra terms in the coefficigdppt
are due to the clusters that ‘bite in their own tail’.



d-dimensional Kagomnlattices 3457

Although the resemblance 61 p) to a geometric series is not exact, it does suggest that
1/d is the obvious candidate for the expansion parameter. This is in contrast to the cubic
lattice, where it is 1(2d — 1), see equation (2). In fact, the resemblance to a geometric
series suggests that a singularitySgfp) should occur in the vicinity oflp = 1. Therefore,
one can expect the percolation threshold to scale as

1

Pc ™ 4 )

In figure 4 the relatiorp. = 1/d is shown with a dashed line. The percolation thresholds
for d = 5 and 6 are already reasonably well approximated by this relation. In an attempt
to calculate the percolation threshold o= 8, we computed 4059+ 0.0005 forL =5,
0.10864+ 0.0006 for L = 6, and 011174+ 0.0005 for L = 7. Based on the last two points
one can fit the percolation threshold to h& 2D+ 0.003, which is close to the valuel®5
one would expect on the basis of equation (9). However, the point fer5 does not lie
on the same fit, indicating that these lattice sizes are not yet large enough. Therefore, there
is probably also a small systematic error in the determination of the vallz®.0

When one wants to refine the scaling behaviour given by equation (9) with terms of the
order of 1/d? and further, analogous to equation (2), more terms in the series expansion
would be required, plus a careful mathematical analysis of the radius of convergence of the
series. This is beyond the scope of the present paper.

5. Random walks

It is interesting to study the return probabilif of a random walker on @-dimensional
Kagone lattice. Ishioka and Koiwa (1978) suggested tRatis an upper bound for the

site percolation threshold on any latticB: > p.. For Bethe lattices, the equal sign holds
(Hughes and Sahimi 1982). The arguments given by Ishioka and Koiwa to support their
conjecture are not exact, but the relation appears to work fairly wland p. lie closer
together, the more connected a lattice is. Also Salemal (1983) studied the relation
between a random walker (not self-avoiding) and percolation, albeit bond percolation.

The return probability of a random walker can be calculated numerically with a simple
computer program. One can Iat, walkers perform at maximum¥s steps, and count the
number of walkers that have re-visited the site they started from. Alternatively, one can let
Nw walkers perform steps until they are either back at the origin or further away from the
origin than a certain predefined distance. Both methods have been used to estimgke
an estimated inaccuracy of abou001. Note that there are two sources of inaccuracy. The
first is a statistical uncertainty, which scales as/N,; the second is a systematic error,
because each walker is stopped at a certain moment (dfteteps or at a given distance
from the origin). For each of these walkers there is a finite probability that they would have
reached the origin, when given enough time. As a result, the numerical estimates have a
systematic error to the downside. This bias can be made smaller by using a large number
of steps, or a large cut-off distance. In the calculation of the numbers quoted in table 1,
Ns = 10° and higher has been used, aNg = 10°. The results for the cubic lattices are
consistent with Finch (1997) and Flajolet (1995).

The numerical values faP; are close to the percolation thresholds, especially/for 4.

It looks as if the return probability of a random walker obeys the same scaling relation as the
percolation threshold. In the remainder of this section, therefore, a crude approximation for
the return probability is calculated using simple arguments. This approximation corroborates
the scaling of the return probability & ~ 1/d.
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Consider a random walker on tledimensional Kagor@ lattice. Since all directions of
the lattice are equivalent, it does not make a difference which step the walker makes first.
Assume, without loss of generality, that the walker remains within the base polfitdjje
Assume further, as a first approximation, that he stays within this polytope for a number
of steps, and then returns to the origin. The walker can take an arbitrary number of steps
within this base polytope, with a probability/ — 1)/(2d) (the walker can choose from
2d directions,d of which are outside the base polytope, and one of #heszhe origin).
After a number of steps the walker should step back to the origin, which happens with a
probability 1/(2d). This approximation yields

> 1 (d-1\"?% 1
=Y 0i(%) =t (10
This approximation already reveals an interesting point: in high dimensions, the return
probability scales a® ~ 1/d. Since the probability A1 + d) is the exact probability of
return via a few selected paths, we also know that the exact probability on retuamyia
path will be higher than A1+ d). It is therefore impossible that it is as low ag2d — 1),

as is the case for cubic lattices.

One can improve on the above approximation by allowing the walker to step outside
the base polytope occasionally. Choose, for instahs@esx; from which the walker steps
outside. If the walker makessteps within the base polytope before returning to the origin,
there are(sjl) possible choices (because the last of ¢tsteps is to the origin):

o) 1 d—1 s—2 s—1 s—1 1i
Po=Y —(Z—= . —=.
" ;261(261) XZO< i )(401)

The factor ¥(4d) emerges because the walker has a probability/@ftd step outside the
base polytope, and a probability (2d) to immediately step back tg. One can also allow

the walker to make a number of additional steps, as long as he is only one step away from
x; and outside the base polytope. There @re 1) possibilities out of a total of 2to make

such a step
00 1 d_lx—Z s—1 s—1 1 =) d_lki
P,,2—25<_2d> X,O< i ) EZ< 2d>

s=2 i= k=0
1 1 2
_1 + 3/(2d) . (11)
d 1+ 3/(2d) + 3/(2d?)
This type of reasoning can be taken a step further, yielding
1 1+ 2/d + 9/(4d?)
Pia [d+ 5] (12)

3T 41+ 2/d + 11/(4d?) + 9/(4d3)

All the paths that are included in this way are paths where the walker returns to the origin
through the base polytope he started in. The first contributions from paths that return from
the opposite side are paths of six steps, see figure 8. As therel@fe-2) of such paths,
the probability to return from the opposite side in six stepgds— 1)/(2d)°, which is
of the order ¥d*. Thus the conclusion that the return probability scales /abs rémains
unchanged.

As a numerical check on this scaling behaviour, the return probability for the eight-
dimensional Kagor lattice was calculated?P, = 0.126+4 0.001. This compares well with
the approximation @24 from equation (12).
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6. Discussion

The Kagong lattice has rather different propertiesdrdimensions than the cubic lattice: it
does not behave as a Bethe lattice in high dimensions, although one usually assumes that
all lattices do. The series expansion of section 4 provides some insight into why this is
the case. One clear difference with the cubic lattice is that the leading powginothe
expression for the number of clusterssodites is(s + 1)d — (s — 1) for the Kagoné lattice,

but 2sd — 2(s — 1) for the cubic lattice. The coefficient ot/ differs by a factor of two

here. The significance of this power gfis that it is the ‘coordination number’ of a cluster

of s sites, just agy; is the coordination number of a single site. The underlying reason
for the different powers of is that two adjacent sites on the Kagenattice always have

d — 1 common neighbours, whereas two adjacent sites on the cubic lattice have none. In
high dimensions this difference does not disappear, but instead becomes more important.

The same difference also explains why the return probability is different for these
lattices. Since adjacent sites have- 1 common neighbours, there is, in high dimensions,
an increasing number of ways to return to the origin in three steps. On a Bethe lattice,
such paths do not exist: here a walker can only return to the origin by retracing his steps.
Therefore, the Kagoilattice does not behave as a Bethe lattice in high dimensions.

Going back to the two-dimensional Kagértattice, one could say that one of the reasons
why it has a much higher site percolation threshold than the square lattice is because of its
‘common neighbours’.

We can apply the same reasoningbimnd percolation. The bond percolation threshold
of the Kagoné lattice is also higher than that of the square lattice, but the difference is
smaller than for the site percolation threshold. Two adjacent bonds on the square lattice
always have two common neighbours. On the Ka@dattice, two adjacent bonds have,
depending on their relative position, two or three common neighbours. The former happens
in two thirds of the situations, the latter in one third. Therefore, bond percolation
the Kagong lattice has more resemblance to the square lattice, but still the two lattices
are different. This is consistent with the difference in bond percolation thresholds being
smaller, but not negligible.

Finally, let us consider the relation to the diamond lattice/idimensions. Since the
site percolation threshold of the Kagéntattice scales ag. ~ 1/d = 2/q, this holds for
the bond percolation threshold of the diamond lattice as well. However, for the diamond
lattice g = d + 1, SO pcgia ~ 1/(¢ — 1), which is the familiar Bethe result once more.
This highlights a more general property. Each bond problem can be mapped onto a site
problem (see, e.g., Kesten 1982). When the bond problem is on a lattice withy, the
lattice for the corresponding site problem will haye= 2(g, — 1). As a consequence, for
each class of lattices for which the bond percolation thresholds sca@le-asf (¢), there is
another class of lattices for which the site percolation thresholds scaigﬂsf(%q +1).

It would, therefore, be more consistent to describe bond percolation in terms of the number
of neighbours a bond has, which igg2— 1).

Acknowledgments
The author would like to thank Ed Stephens for critically reading the manuscript and Shell

International Exploration & Production for permission to publish this paper.

References

Finch S 1997ttp://www.mathsoft.com/asolve/constant/polya/polya.html
Flajolet P 1995sci.math.research newsgroup, July 10



3460 S C van der Marck

Galam S and Mauger A 1998hys. RevE 53 2177-81

Gaurt D S and Ruskin H 1978. Phys. A: Math. Genl1 1369-80

Gaunt D S, Syke M F and Ruskin H 1978. Phys. A: Math. Ger9 1899-1911

Grassberger P 1992 Phys. A: Math. Genl5 5867-88

Hughes B D and Sahimi M 1982. Stat. Phys29 781-94

Ishioka S and Koiwa M 197®hil. Mag. A 37 517-33

Kesten H 198ZPercolation Theory for Mathematiciar{®oston: Birkrauser)

Sahimi M, Hughes B D, ScrivelL E and Davs H T 1983J. Phys. A: Math. Genl6 L67-71

Stauffer D and Aharony A 199htroduction to Percolation Theor{London: Taylor and Francis)

Sykes M F and Essa J W 1964J. Math. Phys5 1117-27

Sykes M F and Glen M 197@. Phys. A: Math. Gerd 87-95

Van der Mar& S C 1997aPhys. RevE 55 1514-17

——1997bPhys. RevE (Erratum)56 3732

——1997cPhys. RevE 55 6593-97

Weissten E W 1998 http://www.astro.virginia.edu/~eww6n/math/, Treasure Trove of Mathematics
(Boca Raton, FL: CRC Press) to be published

Ziff R M 1992 Phys. Rev. Let69 2670-3

Ziff R M and Sapoval B 1986. Phys. A: Math. Genl9 L1169-72

Ziff R M and Sudirg P N 1997J. Phys. A: Math. Ger30 5351



